Capacitación en línea en aula virtual, e-learning
y otras formas de entrega para tu teletrabajo

Encuentra más información

Machine Learning with TensorFlow on Google Cloud Platform (MLTF)

 

Resumen del Curso

What is machine learning, and what kinds of problems can it solve? What are the five phases of converting a candidate use case to be driven by machine learning, and why is it important that the phases not be skipped? Why are neural networks so popular now? How can you set up a supervised learning problem and find a good, generalizable solution using gradient descent and a thoughtful way of creating datasets?

Quién debería asistir

  • Data Engineers and programmers interested in learning how to apply machine learning in practice.
  • Anyone interested in learning how to build and operationalize TensorFlow models.

Prerrequisitos

To get the most out of this course, participants should have:

  • Experience coding in Python
  • Knowledge of basic statistics
  • Knowledge of SQL and cloud computing (helpful)

Objetivos del curso

Learn how to write distributed machine learning models that scale in Tensorflow, scale out the training of those models, and offer high-performance predictions. Convert raw data to features in a way that allows ML to learn important characteristics from the data and bring human insight to bear on the problem. Finally, learn how to incorporate the right mix of parameters that yields accurate, generalized models and knowledge of the theory to solve specific types of ML problems. You will experiment with end-to-end ML, starting from building an ML-focused strategy and progressing into model training, optimization, and productionalization with hands-on labs using Google Cloud Platform

This course teaches participants the following skills:

  • Frame a business use case as a machine learning problem
  • Create machine learning datasets that are capable of achieving generalization
  • Implement machine learning models using TensorFlow
  • Understand the impact of gradient descent parameters on accuracy, training speed, sparsity, and generalization
  • Build and operationalize distributed TensorFlow models
  • Represent and transform features

Contenido del curso

  • How Google Does Machine Learning
  • Launching into Machine Learning
  • Intro to TensorFlow
  • Feature Engineering
  • The Art and Science of ML
Entrenamiento en línea

Duración 5 días

Classroom training

Duración 5 días

Calendario

Instructor-led Online Training:   Este es un curso en línea Guiado por un Instructor
Este es un curso FLEX, que es entregado tanto virtualmente como en el salón de clase.
Inglés
Zona Horaria CEST
2020-11-23 ― 2020-11-27 Entrenamiento en línea Zona Horaria: Central European Time (CET) Lenguaje del curso: Inglés
2021-01-25 ― 2021-01-29 Entrenamiento en línea Curso FLEX. Lenguaje: Inglés
Zona Horaria: Central European Time (CET)
1 hour difference
2021-05-10 ― 2021-05-14 Entrenamiento en línea Curso FLEX. Lenguaje: Inglés
Zona Horaria: Israel Daylight Time (IDT)
Este es un curso FLEX, que es entregado tanto virtualmente como en el salón de clase.
España

Actualmente no hay fechas de entrenamiento disponibles.  Para consultas por favor escribir a info@flane.es